\(\int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx\) [88]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 163 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {a (A-3 B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{32 \sqrt {2} c^{7/2} f}+\frac {a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a (A+13 B) \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a (A-3 B) \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}} \]

[Out]

1/3*a*(A+B)*cos(f*x+e)/f/(c-c*sin(f*x+e))^(7/2)-1/24*a*(A+13*B)*cos(f*x+e)/c/f/(c-c*sin(f*x+e))^(5/2)-1/32*a*(
A-3*B)*cos(f*x+e)/c^2/f/(c-c*sin(f*x+e))^(3/2)-1/64*a*(A-3*B)*arctanh(1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(
f*x+e))^(1/2))/c^(7/2)/f*2^(1/2)

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3046, 2936, 2829, 2729, 2728, 212} \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {a (A-3 B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{32 \sqrt {2} c^{7/2} f}-\frac {a (A-3 B) \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}}-\frac {a (A+13 B) \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}+\frac {a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}} \]

[In]

Int[((a + a*Sin[e + f*x])*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

-1/32*(a*(A - 3*B)*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(Sqrt[2]*c^(7/2)*f) + (
a*(A + B)*Cos[e + f*x])/(3*f*(c - c*Sin[e + f*x])^(7/2)) - (a*(A + 13*B)*Cos[e + f*x])/(24*c*f*(c - c*Sin[e +
f*x])^(5/2)) - (a*(A - 3*B)*Cos[e + f*x])/(32*c^2*f*(c - c*Sin[e + f*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2829

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 2936

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[2*(b*c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(2*m + 3))), x] + Dist[
1/(b^3*(2*m + 3)), Int[(a + b*Sin[e + f*x])^(m + 2)*(b*c + 2*a*d*(m + 1) - b*d*(2*m + 3)*Sin[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -3/2]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = (a c) \int \frac {\cos ^2(e+f x) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{9/2}} \, dx \\ & = \frac {a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}+\frac {a \int \frac {-A c-7 B c-6 B c \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx}{6 c^2} \\ & = \frac {a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a (A+13 B) \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {(a (A-3 B)) \int \frac {1}{(c-c \sin (e+f x))^{3/2}} \, dx}{16 c^2} \\ & = \frac {a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a (A+13 B) \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a (A-3 B) \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}}-\frac {(a (A-3 B)) \int \frac {1}{\sqrt {c-c \sin (e+f x)}} \, dx}{64 c^3} \\ & = \frac {a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a (A+13 B) \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a (A-3 B) \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}}+\frac {(a (A-3 B)) \text {Subst}\left (\int \frac {1}{2 c-x^2} \, dx,x,-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{32 c^3 f} \\ & = -\frac {a (A-3 B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{32 \sqrt {2} c^{7/2} f}+\frac {a (A+B) \cos (e+f x)}{3 f (c-c \sin (e+f x))^{7/2}}-\frac {a (A+13 B) \cos (e+f x)}{24 c f (c-c \sin (e+f x))^{5/2}}-\frac {a (A-3 B) \cos (e+f x)}{32 c^2 f (c-c \sin (e+f x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.37 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.33 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {a (-1+\sin (e+f x)) (1+\sin (e+f x)) \left (3 \sqrt {2} (A-3 B) \arctan \left (\frac {\sqrt {-c (1+\sin (e+f x))}}{\sqrt {2} \sqrt {c}}\right ) \sec (e+f x) \sqrt {-c (1+\sin (e+f x))}+\frac {\sqrt {c} \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (47 A-13 B+3 (A-3 B) \cos (2 (e+f x))+4 (5 A+17 B) \sin (e+f x))}{\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7}\right )}{192 c^{7/2} f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[((a + a*Sin[e + f*x])*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

-1/192*(a*(-1 + Sin[e + f*x])*(1 + Sin[e + f*x])*(3*Sqrt[2]*(A - 3*B)*ArcTan[Sqrt[-(c*(1 + Sin[e + f*x]))]/(Sq
rt[2]*Sqrt[c])]*Sec[e + f*x]*Sqrt[-(c*(1 + Sin[e + f*x]))] + (Sqrt[c]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(4
7*A - 13*B + 3*(A - 3*B)*Cos[2*(e + f*x)] + 4*(5*A + 17*B)*Sin[e + f*x]))/(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]
)^7))/(c^(7/2)*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2*Sqrt[c - c*Sin[e + f*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(351\) vs. \(2(140)=280\).

Time = 2.97 (sec) , antiderivative size = 352, normalized size of antiderivative = 2.16

method result size
default \(-\frac {a \left (3 \,\operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, c^{4} \left (A -3 B \right ) \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-9 \,\operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, c^{4} \left (A -3 B \right ) \left (\cos ^{2}\left (f x +e \right )\right )-12 \,\operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, c^{4} \left (A -3 B \right ) \sin \left (f x +e \right )+6 A \left (c +c \sin \left (f x +e \right )\right )^{\frac {5}{2}} c^{\frac {3}{2}}-32 A \left (c +c \sin \left (f x +e \right )\right )^{\frac {3}{2}} c^{\frac {5}{2}}-24 A \sqrt {c +c \sin \left (f x +e \right )}\, c^{\frac {7}{2}}-18 B \left (c +c \sin \left (f x +e \right )\right )^{\frac {5}{2}} c^{\frac {3}{2}}-32 B \left (c +c \sin \left (f x +e \right )\right )^{\frac {3}{2}} c^{\frac {5}{2}}+72 B \sqrt {c +c \sin \left (f x +e \right )}\, c^{\frac {7}{2}}+12 A \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{4}-36 B \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{4}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}}{192 c^{\frac {15}{2}} \left (\sin \left (f x +e \right )-1\right )^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(352\)
parts \(\text {Expression too large to display}\) \(747\)

[In]

int((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/192/c^(15/2)*a*(3*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)*c^4*(A-3*B)*cos(f*x+e)^2*sin(
f*x+e)-9*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)*c^4*(A-3*B)*cos(f*x+e)^2-12*arctanh(1/2*(
c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)*c^4*(A-3*B)*sin(f*x+e)+6*A*(c+c*sin(f*x+e))^(5/2)*c^(3/2)-32*A*
(c+c*sin(f*x+e))^(3/2)*c^(5/2)-24*A*(c+c*sin(f*x+e))^(1/2)*c^(7/2)-18*B*(c+c*sin(f*x+e))^(5/2)*c^(3/2)-32*B*(c
+c*sin(f*x+e))^(3/2)*c^(5/2)+72*B*(c+c*sin(f*x+e))^(1/2)*c^(7/2)+12*A*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/
2)*2^(1/2)/c^(1/2))*c^4-36*B*2^(1/2)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*c^4)*(c*(1+sin(f*x+e)
))^(1/2)/(sin(f*x+e)-1)^2/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 490 vs. \(2 (140) = 280\).

Time = 0.28 (sec) , antiderivative size = 490, normalized size of antiderivative = 3.01 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {3 \, \sqrt {2} {\left ({\left (A - 3 \, B\right )} a \cos \left (f x + e\right )^{4} - 3 \, {\left (A - 3 \, B\right )} a \cos \left (f x + e\right )^{3} - 8 \, {\left (A - 3 \, B\right )} a \cos \left (f x + e\right )^{2} + 4 \, {\left (A - 3 \, B\right )} a \cos \left (f x + e\right ) + 8 \, {\left (A - 3 \, B\right )} a + {\left ({\left (A - 3 \, B\right )} a \cos \left (f x + e\right )^{3} + 4 \, {\left (A - 3 \, B\right )} a \cos \left (f x + e\right )^{2} - 4 \, {\left (A - 3 \, B\right )} a \cos \left (f x + e\right ) - 8 \, {\left (A - 3 \, B\right )} a\right )} \sin \left (f x + e\right )\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, {\left (3 \, {\left (A - 3 \, B\right )} a \cos \left (f x + e\right )^{3} - {\left (7 \, A + 43 \, B\right )} a \cos \left (f x + e\right )^{2} + 2 \, {\left (11 \, A - B\right )} a \cos \left (f x + e\right ) + 32 \, {\left (A + B\right )} a + {\left (3 \, {\left (A - 3 \, B\right )} a \cos \left (f x + e\right )^{2} + 2 \, {\left (5 \, A + 17 \, B\right )} a \cos \left (f x + e\right ) + 32 \, {\left (A + B\right )} a\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{384 \, {\left (c^{4} f \cos \left (f x + e\right )^{4} - 3 \, c^{4} f \cos \left (f x + e\right )^{3} - 8 \, c^{4} f \cos \left (f x + e\right )^{2} + 4 \, c^{4} f \cos \left (f x + e\right ) + 8 \, c^{4} f + {\left (c^{4} f \cos \left (f x + e\right )^{3} + 4 \, c^{4} f \cos \left (f x + e\right )^{2} - 4 \, c^{4} f \cos \left (f x + e\right ) - 8 \, c^{4} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

-1/384*(3*sqrt(2)*((A - 3*B)*a*cos(f*x + e)^4 - 3*(A - 3*B)*a*cos(f*x + e)^3 - 8*(A - 3*B)*a*cos(f*x + e)^2 +
4*(A - 3*B)*a*cos(f*x + e) + 8*(A - 3*B)*a + ((A - 3*B)*a*cos(f*x + e)^3 + 4*(A - 3*B)*a*cos(f*x + e)^2 - 4*(A
 - 3*B)*a*cos(f*x + e) - 8*(A - 3*B)*a)*sin(f*x + e))*sqrt(c)*log(-(c*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f
*x + e) + c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*x + e
) + 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - 4*(3*(A - 3*B)*a*cos(f*x + e
)^3 - (7*A + 43*B)*a*cos(f*x + e)^2 + 2*(11*A - B)*a*cos(f*x + e) + 32*(A + B)*a + (3*(A - 3*B)*a*cos(f*x + e)
^2 + 2*(5*A + 17*B)*a*cos(f*x + e) + 32*(A + B)*a)*sin(f*x + e))*sqrt(-c*sin(f*x + e) + c))/(c^4*f*cos(f*x + e
)^4 - 3*c^4*f*cos(f*x + e)^3 - 8*c^4*f*cos(f*x + e)^2 + 4*c^4*f*cos(f*x + e) + 8*c^4*f + (c^4*f*cos(f*x + e)^3
 + 4*c^4*f*cos(f*x + e)^2 - 4*c^4*f*cos(f*x + e) - 8*c^4*f)*sin(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)/(-c*sin(f*x + e) + c)^(7/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 628 vs. \(2 (140) = 280\).

Time = 0.45 (sec) , antiderivative size = 628, normalized size of antiderivative = 3.85 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

-1/1536*(12*sqrt(2)*(A*a*sqrt(c) - 3*B*a*sqrt(c))*log(-(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2
*f*x + 1/2*e) + 1))/(c^4*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - sqrt(2)*(A*a*sqrt(c) + B*a*sqrt(c) - 3*A*a*sqr
t(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 9*B*a*sqrt(c)*(cos(-1/4*pi +
1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) - 3*A*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1
)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 - 3*B*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi
 + 1/2*f*x + 1/2*e) + 1)^2 + 22*A*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3/(cos(-1/4*pi + 1/2*f*x + 1/
2*e) + 1)^3 - 66*B*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3)*(c
os(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3/(c^4*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3*sgn(sin(-1/4*pi + 1/2*f*x + 1
/2*e))) - sqrt(2)*(3*A*a*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) +
3*B*a*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 3*A*a*c^(17/2)*(cos
(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 - 9*B*a*c^(17/2)*(cos(-1/4*pi + 1/2*
f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 - A*a*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)
^3/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3 - B*a*c^(17/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3/(cos(-1/4*pi +
 1/2*f*x + 1/2*e) + 1)^3)/(c^12*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,\left (a+a\,\sin \left (e+f\,x\right )\right )}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}} \,d x \]

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x)))/(c - c*sin(e + f*x))^(7/2),x)

[Out]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x)))/(c - c*sin(e + f*x))^(7/2), x)